Code: 23CS3201, 23IT3201, 23AM3201, 23DS3201

I B.Tech - II Semester - Regular Examinations - JULY 2024

DATA STRUCTURES (Common for CSE, IT, AIML, DS)

Duration :	3	hours
-------------------	---	-------

Note: 1. This question paper contains two Parts A and B.

- 2. Part-A contains 10 short answer questions. Each Question carries 2 Marks.
- 3. Part-B contains 5 essay questions with an internal choice from each unit. Each Question carries 10 marks.
- 4. All parts of Question paper must be answered in one place.

BL – Blooms Level

		BL	CO
1.a)	Define abstract data type.	L1	CO1
1.b)	Differentiate binary search and linear search.	L2	CO1
1.c)	Compare implementation of list with arrays and		
	pointers. Which is efficient? Justify your answer	L2	CO1
	in one or two lines.	l	
1.d)	How self-referential structures are useful in the	L1	CO1
	implementation of linked list data structure.	LI	COI
1.e)	List the applications of stack.	L1	CO1
1.f)	Give the overflow condition and underflow	L1	CO1
	condition of stack in array implementation.		COI
1.g)	In the circular implementation of queue, what is	L1	CO1
	the condition to check queue is empty or not?		COI
1.h)	List the advantages of pointer implementation of	L1	CO1
	queue over array implementation.		COI
1.i)	Define binary tree.	L1	CO1
1.j)	Describe the purpose of hashing.	L2	CO1
	Page 1 of 4		

PART – A

Max. Marks: 70

CO – Course Outcome

~

PART – B

			BL	СО	Max. Marks		
	UNIT-I						
2	a)	Apply bubble sort on the following	L3	CO2	5 M		
		elements: 10, 4, 12, 3, 23, 1. Show each					
		iteration very clearly.					
	b)	Discuss how do we measure the	L2	CO1	5 M		
		complexity of an algorithm.					
	OR						
3	a)	Explain selection sort algorithm with	L2	CO2	5 M		
		suitable example.					
	b)	Discuss the importance of linear data	L2	CO1	5 M		
		structures.					
UNIT-II							
4	a)	Develop pseudo code to print elements of	L3	CO3	5 M		
-	<i>a)</i>	linked list in reverse order.	L3		J 1 VI		
	b)	Discuss the following operations in	L2	CO3	5 M		
		circular linked list:			•		
		i. Insert an element					
		ii. Delete an element					
	<u> </u>	OR	<u> </u>	1	<u> </u>		
5	a)	Compare singly linked list and doubly	L2	CO1	5 M		
		linked list.					
	b)	Explain the array implementation of list	L2	CO1	5 M		
		in detail.					
		·					

	1	UNIT-III			
6	a)	Develop algorithm to convert infix	L3	CO3	5 M
	•	expression to postfix expression.		<u> </u>	
	b)	Explain implementation of stack using	L2	CO1	5 M
		pointers.			
		OR			
7	a)	Explain push() and pop() functions of	L2	CO1	5 M
		stack data structure with array			
		implementation.			
	b)	Describe the process of evaluating post	L2	CO3	5 M
		fix expression using stack.			
		•		·	
		UNIT-IV			
8	a)	Explain about array implementation of	L2	CO1	5 M
		queue.			
	b)	What is circular queue? What is	L2	CO1	5 M
		advantage of circular queue over linear			
		queue? Demonstrate with a scenario.			
	1	OR	1		
9	a)	Find the list of elements in the queue	L3	CO3	5 M
		with following operations in sequence:			
		insert(10), insert(20), delete, insert(30),			
		insert(40), delete. Assume initially queue			
	b)	Discuss about pointer implementation of	L2	CO1	5 M
	b)	is empty.	L2	CO1	

UNIT-V					
10	a)	Let us consider a simple hash function as	L4	CO4	5 M
		"key mod 11" and sequence of keys as			
		50, 700, 76, 85, 92, 73, 101, 45, 62, 99			
		with table size 11. Show how these keys			
		will be stored, if we apply quadratic			
		probing in case of collision.			
	b)	Discuss about insertion and deletion of an	L2	CO4	5 M
		element in binary search tree.			
	OR				
11	a)	Define Binary search tree. Construct	L3	CO4	5 M
		binary search tree with following keys:			
		55,45,65,40,60,70,66,99,2,34			
	b)	Assume a table has 8 slots. Using	L4	CO4	5 M
		chaining, insert the following elements			
		into the hash table.			
	56,66,18,72,43,65,6,17,10,5,64,16,71,				
		and 15 are inserted in the order. Consider			
		Hash function: $h(k) = k \mod m$, where			
		m=8.			